首页 | 本学科首页   官方微博 | 高级检索  
     


Endgroup analysis of polyethylene glycol polymers by matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry
Authors:CG de Koster  MC Duursma  GJ van Rooij  RM Heeren  JJ Boon
Affiliation:Unit for Macromolecular Mass Spectrometry, FOM Institute for Atomic and Molecular Physics, Amsterdam, The Netherlands.
Abstract:Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) by external injection of matrix-assisted laser desorbed and ionized (MALDI) polymers offers good possibilities for characterization of low molecular weight homopolymers (MW range up to 10 kDa). The molecular masses of the molecular weight distribution (MWD) components of underivatized and derivatized (dimethyl, dipropyl, dibutyl and diacetyl) polyethylene glycol (PEG) 1000 and 4000 were measured by MALDI-FTICR-MS. These measurements have been performed using a commercial FTICR spectrometer with a home-built external ion source. MALDI of the samples with a 2,5-dihydroxybenzoic acid matrix in a 1000:1 matrix-to-analyte molar ratio produces sodiated molecules in a sufficient yield to trap the ions in the ICR cell. The masses of the molecular weight distribution of PEG components were measured in broad-band mode with a mass accuracy of < 5 ppm in the mass range around 1000 u and within 40 ppm accuracy around 4000 u. From these measurements, the endgroup mass of the polymer was determined by correlation of the measured component mass with the degree of polymerization. The masses of the PEG endgroups have been determined within a deviation of 3-10 millimass units for the PEG1000 derivatives and 10-100 millimass units for the PEG4000 derivatives, thus confirming the identity of the distal parts of the model compounds.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号