首页 | 本学科首页   官方微博 | 高级检索  
     

基于K-均值聚类粒子群优化算法的组合测试数据生成
引用本文:潘烁,王曙燕,孙家泽. 基于K-均值聚类粒子群优化算法的组合测试数据生成[J]. 计算机应用, 2012, 32(4): 1165-1167. DOI: 10.3724/SP.J.1087.2012.01165
作者姓名:潘烁  王曙燕  孙家泽
作者单位:西安邮电学院 计算机学院, 西安 710061
基金项目:国家自然科学基金资助项目(61050003)
摘    要:在解决组合测试中的测试数据集生成问题时,粒子群优化算法(PSO)在待测数据量增加达到一定程度以后,出现迭代次数增加、收敛速度减慢的缺点。针对该问题,提出了一种应用于组合测试数据集生成问题的基于K-均值聚类的粒子群优化算法。通过对测试数据集合进行聚类分区域,增强测试数据集的多态性,从而对粒子群优化算法进行改进,增加各个区域内粒子之间的影响力。典型案例实验表明该方法在保证覆盖度的情况下具有一定的优势和特点。

关 键 词:组合测试  粒子群优化算法  K-均值聚类算法  测试数据  
收稿时间:2011-09-21
修稿时间:2011-11-17

Test data generation based on K-means clustering and particle swarm optimization
PAN Shuo,WANG Shu-yan,SUN Jia-ze. Test data generation based on K-means clustering and particle swarm optimization[J]. Journal of Computer Applications, 2012, 32(4): 1165-1167. DOI: 10.3724/SP.J.1087.2012.01165
Authors:PAN Shuo  WANG Shu-yan  SUN Jia-ze
Affiliation:School of Computer Science and Technology,Xian University of Posts and Telecommunications,Xi’an Shaanxi 710061, China
Abstract:To solve the problem of the test data set generation in combinatorial test,if the software under test has a great many factors and values,the traditional Particle Swarm Optimization(PSO)will have large iteration times and slow convergence velocity.A test data set generation method based on K-means clustering algorithm and PSO has been proposed.The polymorphism of the test data set has been enhanced,though clustering and partitioning the test data set.And it makes PSO has been improved.The compact between the particles in each area has been promoted.Several typical cases show that this method has some merits while ensuring the coverage.
Keywords:combinatorial test  Particle Swarm Optimization(PSO) algorithm  K-means clustering algorithm  test data
本文献已被 CNKI 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号