首页 | 本学科首页   官方微博 | 高级检索  
     

基于L1/2正则化的超分辨率图像重建算法
引用本文:王欢,王永革. 基于L1/2正则化的超分辨率图像重建算法[J]. 计算机工程, 2012, 38(20): 191-194
作者姓名:王欢  王永革
作者单位:北京航空航天大学数学与系统科学学院,北京,100191
基金项目:国家自然科学基金资助项目(10801007);国家“973”计划基金资助项目(2010CB731900)
摘    要:为提高图像重建质量,研究超分辨率图像重建技术与稀疏表示理论,提出一种基于L1/2正则化的超分辨率图像重建算法.将L1/2正则化理论运用到字典学习中,利用学习得到的字典重建高分辨率图像.实验结果表明,该算法的图像重建效果优于基于L1正则化的超分辨率图像重建算法.

关 键 词:L1/2正则化  稀疏表示  超分辨率图像重建  K-SVD算法  字典学习  训练样本
收稿时间:2011-12-31
修稿时间:2012-02-26

Super-resolution Image Reconstruction Algorithm Based on L1/2 Regularization
WANG Huan , WANG Yong-ge. Super-resolution Image Reconstruction Algorithm Based on L1/2 Regularization[J]. Computer Engineering, 2012, 38(20): 191-194
Authors:WANG Huan    WANG Yong-ge
Affiliation:(School of Mathematics and Systems Science,Beihang University,Beijing 100191,China)
Abstract:In order to improve the image reconstruction quality,by studying the super-resolution image reconstruction technology and the theory of sparse representation,this paper proposes a super-resolution image reconstruction algorithm based on L1/2 regularization.It applies L1/2 regularization into dictionary learning,and reconstructs super-resolution images using learned dictionaries.Experimental results show that the reconstruction results in this paper are better than the results of super-resolution image reconstruction algorithm based on L1 regularization.
Keywords:L1/2 regularization  sparse representation  super-resolution image reconstruction  K-SVD algorithm  dictionary learning  training sample
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号