首页 | 本学科首页   官方微博 | 高级检索  
     


Assembling Colloidal Silica into Porous Hollow Microspheres
Authors:Shyam B Kadali  Nikolaos Soultanidis  Michael S Wong
Affiliation:1. Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street MS-362, Houston, TX, 77005, USA
2. Department of Chemistry, Rice University, 6100 Main Street, MS-362, Houston, TX, 77005, USA
Abstract:A non-surfactant-based synthesis approach to mesoporous hollow spheres through the use of colloidal silica is presented. Based on nanoparticle assembly chemistry developed previously for silica/polymer hybrid microcapsules, the room-temperature preparation follows a two-step sequence: (1) the electrostatic reaction of cationic polymer with an anionic salt solution, resulting in a suspension of salt-bridged polymer aggregates; and (2) the electrostatic reaction between this suspension and an aqueous suspension of nanoparticles (NPs). As a specific example, 13-nm silica particles, combined with polyallylamine and sodium citrate, gave silica/polymer hollow spheres with a mean diameter of 2.1 μm and a BET surface area of 4 m2/g. After calcination at 600 °C, the resulting silica-only microcapsules had a BET surface area of 259 m2/g, a modal pore size of 4.0 nm, and a pore volume of 0.38 cc/g, values that exceeded those of calcined silica NPs. This colloidal silica-based material is an example of the simultaneous control of pore size (at the nanometer scale) and particle morphology (at the micrometer scale) that is possible through charge-driven NP assembly.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号