首页 | 本学科首页   官方微博 | 高级检索  
     


Strong Completeness and Limited Canonicity for PDL
Authors:Gerard Renardel de Lavalette  Barteld Kooi  Rineke Verbrugge
Affiliation:(1) Department of Computing Science, University of Groningen, P.O. Box 407, Groningen, 9700 AK, The Netherlands;(2) Faculty of Philosophy, University of Groningen, Groningen, The Netherlands;(3) Department of Artificial Intelligence, University of Groningen, Groningen, The Netherlands
Abstract:Propositional dynamic logic ($$mathsf{PDL}$$) is complete but not compact. As a consequence, strong completeness (the property $$Gamma models varphi Rightarrow Gamma vdash  varphi$$) requires an infinitary proof system. In this paper, we present a short proof for strong completeness of $$mathsf{PDL}$$ relative to an infinitary proof system containing the rule from [α; β n ]φ for all $$n in {mathbb{N}}$$ , conclude $$[alpha;beta^*] varphi$$ . The proof uses a universal canonical model, and it is generalized to other modal logics with infinitary proof rules, such as epistemic knowledge with common knowledge. Also, we show that the universal canonical model of $$mathsf{PDL}$$ lacks the property of modal harmony, the analogue of the Truth lemma for modal operators.
Keywords:Propositional dynamic logic  Strong completeness  Canonical model  Model disharmony
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号