首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis and processing of PMMA carbon nanotube nanocomposite foams
Authors:Changchun Zeng  Nemat Hossieny  Chuck Zhang  Ben Wang
Affiliation:High Performance Materials Institute Florida State University, Department of Industrial and Manufacturing Engineering FAMU-FSU College of Engineering 2525 Pottsdamer St, Tallahassee, FL 32310, USA
Abstract:Poly(methyl methacrylate) (PMMA) multi-walled carbon nanotubes (MWCNTs) nanocomposites were synthesized by several methods using both pristine and surface functionalized carbon nanotubes (CNTs). Fourier transform infrared (FTIR) spectroscopy was used to characterize the presence and types of functional groups in functionalized MWCNTs, while the dispersion of MWCNTs in PMMA was characterized using scanning electron microscopy (SEM). The prepared nanocomposites were foamed using carbon dioxide (CO2) as the foaming agent. The cell morphology was observed by SEM, and the cell size and cell density were calculated via image analysis. It was found that both the synthesis methods and CNTs surface functionalization affect the MWCNTs dispersion in the polymer matrix, which in turn profoundly influences the cell nucleation mechanism and cell morphology. The MWCNTs are efficient heterogeneous nucleation agents leading to increased cell density at low particle concentrations. A mixed mode of nucleation mechanism was observed in nanocomposite foams in which polymer rich and particle rich region co-exist due to insufficient particle dispersion. This leads to a bimodal cell size distribution. Uniform dispersion of MWCNTs can be achieved via synergistic combination of improving synthesis methodology and CNTs surface functionalization. Foams from these nanocomposites exhibit single modal cell size distribution and remarkably increased cell density and reduced cell size. An increase in cell density of ∼70 times and reduction of cell size of ∼80% was observed in nanocomposite foam with 1% MWCNTs.
Keywords:Polymer nanocomposite foams  Microcellular foams  Carbon nanotubes
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号