首页 | 本学科首页   官方微博 | 高级检索  
     


Translocation of compact polymer chains through a nanopore
Authors:Zhiyong Yang  Linxi Zhang  Haojun Liang
Affiliation:a Department of Physics, Zhejiang University, Hangzhou 310027, PR China
b Department of Physics, Wenzhou University, Wenzhou 325027, PR China
c Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
Abstract:We perform dynamical Monte Carlo simulation to study the forced translocation of compact polymer chains in three-dimensional lattices. The chains are driven through a nanopore connecting two infinite channels by an external field. The scaling properties of average translocation time τ and translocation time distribution (TTD) are studied. The effects of contact energy (?C), electric field strength (E), and nanopore width (L) on the scaling exponent (α) of average translocation time τ ∼ Nα and the TTD are investigated. For the scaling behavior of τ ∼ Nα, we have found that there is no crossover behavior with weak field strength when the nanopore width is one lattice spacing, which is less than average bond length, while crossover behaviors are observed for larger nanopore widths. The scaling exponent α also depends on contact energy ?C and electric field strength E. For the TTD, it shifts from the Gaussian to a right-skew distribution with the electric field E increasing for short chains; while for long chains, multi-peak distributions are observed. As a primary and simple model, compact polymer chains are extensively used to capture the structure and thermodynamic properties of proteins, therefore we can investigate the protein translocation by simulating compact chain translocation, and this study will be useful for exploring the complex translocation behaviors of proteins.
Keywords:Translocation   Compact chain   Monte Carlo simulation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号