首页 | 本学科首页   官方微博 | 高级检索  
     

基于萤火虫算法的大坝安全监控BP网络模型及其应用
引用本文:李连基,钱程,闫潇群. 基于萤火虫算法的大坝安全监控BP网络模型及其应用[J]. 水电能源科学, 2015, 33(9): 74-76
作者姓名:李连基  钱程  闫潇群
作者单位:河海大学 水利水电学院, 江苏 南京 210098
基金项目:江苏省杰出青年基金项目(BK2012036);高等学校博士学科点专项科研基金项目(20130094110010);国家自然科学基金项目(51179066,51139001,41323001,51079086);水利部公益性行业科研专项经费项目(201301061,201201038);国家重点实验室专项经费资助项目(20145027612)
摘    要:为改善大坝安全监控BP神经网络模型易陷入局部极值的问题,引入萤火虫算法,用来获取BP神经网络的连接权值和阈值的初始值。依据大坝安全监测数据,借助改进后的BP神经网络,实现大坝安全监控模型的构建和安全状况预测。实例验证结果表明,改进模型较常规BP神经网络模型的训练效果更稳定,预测精度更高。该方法具有一定的实用价值。

关 键 词:大坝安全; 监控模型; BP神经网络; 萤火虫算法; 小波包分解

Dam Safety Monitoring BP Network Model and Its Application Based on Firefly Algorithm
Abstract:BP neural network easily falls into local minima when it used to dam safety monitoring model. In order to improve this problem, the firefly algorithm was used to calculate the initial value of connection weights and thresholds for BP neural network. Based on the monitoring data of the dam, the safety monitoring model of dam was established and its safety condition was predicted with the improved BP neural network. Example proves that the improved model has advantages in both training result and prediction accuracy compared with the conventional BP neural network model. The method has practical value.
Keywords:dam safety   monitor model   BP neural network   firefly algorithm   wavelet packet decomposition
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号