首页 | 本学科首页   官方微博 | 高级检索  
     


Speed Scaling of Processes with Arbitrary Speedup Curves on a Multiprocessor
Authors:Ho-Leung Chan  Jeff Edmonds  Kirk Pruhs
Affiliation:1.The University of Hong Kong,Pokfulam,Hong Kong;2.York University,Toronto,Canada;3.University of Pittsburgh,Pittsburgh,USA
Abstract:We consider the setting of a multiprocessor where the speeds of the m processors can be individually scaled. Jobs arrive over time and have varying degrees of parallelizability. A nonclairvoyant scheduler must assign the processes to processors, and scale the speeds of the processors. We consider the objective of energy plus flow time. We assume that a processor running at speed s uses power s α for some constant α>1. For processes that may have side effects or that are not checkpointable, we show an W(m(a-1)/a2)Omega(m^{(alpha -1)/alpha^{2}}) bound on the competitive ratio of any randomized algorithm. For checkpointable processes without side effects, we give an O(log m)-competitive algorithm. Thus for processes that may have side effects or that are not checkpointable, the achievable competitive ratio grows quickly with the number of processors, but for checkpointable processes without side effects, the achievable competitive ratio grows slowly with the number of processors. We then show a lower bound of Ω(log 1/α m) on the competitive ratio of any randomized algorithm for checkpointable processes without side effects.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号