摘 要: | 为了满足果园植保设备对于病害检测模型实时性、识别精度和轻量化的需求,提出了一种基于改进YOLOv3模型的葡萄叶部病害检测模型YOLO-SL.首先,引入轻量级网络ShuffleNetv2的组成模块优化YOLOv3原有的特征提取网络,以降低网络模型参数,然后在优化后的特征提取网络中融合了CBAM注意力机制,并在YOLOv3网络模型的特征金字塔结构中增加了一层小目标特征检测层,以提升检测模型识别精度.最后,在经过数据增强的数据集上进行了不同检测模型的对比试验,试验结果表明YOLO-SL模型平均检测精度可达90.4%,平均检测时间降低到32.2 ms,权重大小降低为原YOLOv3模型的18.3%,可以为葡萄叶部病害检测技术在实际工作环境中的应用提供参考.
|