首页 | 本学科首页   官方微博 | 高级检索  
     


N-glycosylation is not essential for enzyme activity of 11beta-hydroxysteroid dehydrogenase type 2
Authors:ZN Kyossev  WB Reeves
Affiliation:Division of Nephrology, University of Arkansas for Medical Sciences, and The John L. McClellan Veterans Affairs Hospital, Little Rock 72205, USA.
Abstract:11Beta-hydroxysteroid dehydrogenase (11beta-HSD) catalyzes the oxidation of cortisol and corticosterone to cortisone and 11-dehydrocorticosterone, respectively. NAD-dependent 11beta-HSD is expressed at high levels in the distal nephron and contributes to mineralocorticoid specificity in that region. The present studies determined whether N-glycosylation is necessary for the activity of NAD-dependent 11beta-HSD (11beta-HSD2). First, cultured human colonic epithelial cells (T84 cells), which express native 11beta-HSD2 activity, were grown in medium with and without tunicamycin, an inhibitor of N-glycosylation. Tunicamycin had no effect on the enzyme activity. Next, the only putative N-glycosylation site (Asn394-Leu395-Ser396) of the cloned human kidney enzyme was eliminated by site-directed mutagenesis. Chinese hamster ovary (CHO) cells transfected with either the wild-type or the mutant cDNA construct showed no difference in the expressed enzyme activity, and Western blot analysis showed that the 11beta-HSD2 protein was the same size in cells expressing either the wild-type or the N394D mutant. Likewise, the molecular mass of the 11beta-HSD2 protein in T84 cells was not altered by treatment with peptide-N-glycosidase F or tunicamycin. We conclude that human 11beta-HSD2 is not a N-glycoprotein and N-glycosylation is not essential for the expression of enzyme activity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号