首页 | 本学科首页   官方微博 | 高级检索  
     

基于时间误差的循环神经网络参数压缩
引用本文:王龙钢,刘世杰,冯珊珊,李宏伟. 基于时间误差的循环神经网络参数压缩[J]. 计算机工程与应用, 2020, 56(3): 134-138. DOI: 10.3778/j.issn.1002-8331.1810-0376
作者姓名:王龙钢  刘世杰  冯珊珊  李宏伟
作者单位:中国地质大学(武汉) 数学与物理学院,武汉 430074
摘    要:循环神经网络被广泛应用于各种序列数据处理任务中,如机器翻译、语音识别、图像标注等。基于循环神经网络的语言模型通常包含大量的参数,这一点在一定程度上限制了模型在移动设备或嵌入式设备上的使用。在低秩重构压缩的基础上,增加时间误差重构函数,并采用长短时记忆网络中的输入激活机制,提出了一种基于时间误差的低秩重构压缩方法。多个数据集上的数值实验表明,该方法具有较好的压缩效果。

关 键 词:循环神经网络  长短时记忆网络  低秩重构压缩  基于时间误差的低秩重构压缩  

Parameter Compression of Recurrent Neural Networks Based on Time-Error
WANG Longgang,LIU Shijie,FENG Shanshan,LI Hongwei. Parameter Compression of Recurrent Neural Networks Based on Time-Error[J]. Computer Engineering and Applications, 2020, 56(3): 134-138. DOI: 10.3778/j.issn.1002-8331.1810-0376
Authors:WANG Longgang  LIU Shijie  FENG Shanshan  LI Hongwei
Affiliation:School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
Abstract:Recurrent neural networks are widely used in various sequence data processing tasks,such as machine translation,speech recognition,image annotation and so on.The language model based on recurrent neural networks usually contains a large number of parameters,which limits the use of the model on mobile devices or embedded devices to some extent.Aiming at this problem,a low rank reconstruction compression method based on time-error is proposed,which adds the time-error reconstruction function on the basis of low rank reconstruction compression,and the input activation mecha-nism of long short-term memory network is adopted.Numerical experiments on multiple data sets show that the proposed method has a better effect on compression.
Keywords:recurrent neural networks  long short-term memory  low rank reconstruction compression  low rank recon struction compression based on time-error
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号