首页 | 本学科首页   官方微博 | 高级检索  
     


Plasticizing Aqueous Suspensions of Concentrated Alumina with Maltodextrin Sugar
Authors:Christopher H. Schilling  Robert A. Bellman  Rachelle M. Smith  Honey Goel  Herbert Giesche
Affiliation:Ames Laboratory and Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50010;New York State College of Ceramics, Alfred University, Alfred, New York 14802-1296
Abstract:Aqueous suspensions of submicrometer, 20 vol% Al2O3 powder exhibited a transition from strongly flocculated, thixotropic behavior to a low-viscosity, Newtonian-like state upon adding small amounts of maltodextrin (0.03 g of maltodextrin/(g of Al2O3)). These suspensions could be filter pressed to highly dense (57%) and extrudable pastes only when prepared with maltodextrin. We analyzed the interaction of maltodextrin with Al2O3 powder surfaces and quantitatively measured the resulting claylike consolidation, rheological, and extrusion behaviors. Benbow extrusion parameters were comparable to, but higher than, those of kaolin at approximately the same packing density of 57 vol%. In contrast, Al2O3 filter cakes without maltodextrin at 57 vol% density were too stiff to be extruded. Measurements of rheological properties, acoustophoresis, electrophoresis, sorption isotherms, and diffuse reflectance Fourier infrared spectroscopy supported the hypothesis that sorbate-mediated steric hindrance, rather than electrostatic, interparticle repulsion, is important to enhancing the consolidation and fluidity of maltodextrin–Al2O3 suspensions. Viscosity measurements on aqueous maltodextrin solutions indicated that free maltodextrin in solution does not improve suspension fluidity by decreasing the viscosity of the interparticle solution.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号