首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical and Experimental Study on the Effect of Lay-Up Type and Structural Elements on Thickness Uniformity of L-Shaped Laminates
Authors:Yanxia Li  Min Li  Yizhuo Gu  Zuoguang Zhang
Affiliation:(1) Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Material Science and Engineering, Beihang University, Beijing, 100191, People’s Republic of China
Abstract:Based on the two-dimensional resin flow and fiber compaction model developed by our group, we studied the cured laminate thickness uniformity of the L-shaped CF/BMI resin laminates and the effects of lay-up type and structural elements on it. Both the simulated and experimental data showed that the quasi-isotropic laminate thickness was more uniform than that of the 90°]n laminates and the cured thickness of laminates molded by rigid convex tool was more uniform than that molded by the rigid concave tool. Lay-up type has a great influence on the cured laminate thickness uniformity. For the quasi-isotropic laminates, the structural elements, such as curvature radius, flat part length, and the number of plies, did not have much influence on the cured laminate thickness uniformity in the studied scope. For the 90°]n laminates, the corner radius has a larger effect on the corner consolidation in comparison with the flat part length and the number of plies. According to the simulated results, resin pressure and consolidation time were largely affected by the lay-up type, due to the different permeability and compressibility. The rich resin defect was observed in the metallographic photos of the corner region of the 90°]n laminates fabricated with the rigid concave tool, which demonstrated that the resin flow in the laminates played an important rule and validated the numerical prediction. Good agreement between the simulated results and experimental data demonstrated the reliability and universality of the numerical simulation method. These results are greatly helpful for the control of defects in angle-bended laminates and the optimization of cure cycle in autoclave process.
Keywords:Autoclave  Simulation  L-shaped laminates  Resin flow  Defects
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号