首页 | 本学科首页   官方微博 | 高级检索  
     


Heat transfer and pressure drop in furrowed channels with transverse and skewed sinusoidal wavy walls
Authors:Shyy Woei Chang  Arthur William Lees  Tsu Chien Chou
Affiliation:1. Department of Mechanical Engineering, Faculty of Engineering at Sriracha, Kasetsart University Sriracha Campus, 199 M.6, Sukhumvit Road, Sriracha, Chonburi 20230, Thailand;2. Department of Mechanical Engineering, Faculty of Engineering, King Mongkut''s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;1. Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran;2. Faculty of Engineering, Mechanical Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
Abstract:This comparative study examines the detailed Nusselt number (Nu) distributions, pressure drop coefficients (f) and thermal performance factors (η) for two furrowed rectangular channels with transverse and skewed sinusoidal wavy walls. Detailed heat transfer measurements over these transverse and skewed sinusoidal wavy walls at the Reynolds numbers (Re) = 1000, 1500, 2000, 5000, 10,000, 15,000, 20,000, 25,000 and 30,000 are performed using the steady-state infrared thermo-graphic method. Impacts of Re on Nu and f for two tested furrowed channels with transverse and skewed waviness are individually examined. In addition to the macroscopic mixing between the near-wall recirculations and core flows due to the shear layer instabilities in each wavy channel, the secondary flows tripped by the skewed wall-waves further elevate heat transfer performances and distinguish their Nu distributions from those over the transverse wavy wall. The area-averaged Nusselt numbers (Nu¯) for two tested furrowed channels with transverse and skewed waviness with 5000 < Re < 30000 fall, respectively, in the ranges of 3.45–3.71 and 3.98–4.2 times of the Dittus–Boelter levels. A set of Nu¯ and f correlations for each tested furrowed channel is individually derived using Re as the controlling parameter. By way of comparing the thermal performance factors (η) with a selection of rib-roughened channels, the η factors for the present skewed wavy channel are compatible with those in the channel roughened by the compound V-ribs and deepened scales due to the relative low pressure drop penalties with the equivalent heat transfer augmentations to those offered by V-ribs.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号