首页 | 本学科首页   官方微博 | 高级检索  
     


Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities
Authors:L Morawska  GR Johnson  ZD Ristovski  M Hargreaves  K Mengersen  S Corbett  CYH Chao  Y Li  D Katoshevski
Affiliation:1. International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD, Australia;2. Centre for Population Health, Sydney West Area Health Service, Sydney, NSW, Australia;3. Department of Mechanical Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China;4. Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China;5. Department of Biotechnology and Environmental Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
Abstract:A new expiratory droplet investigation system (EDIS) was used to conduct the most comprehensive program of study to date, of the dilution corrected droplet size distributions produced during different respiratory activities.Distinct physiological processes were responsible for specific size distribution modes. The majority of particles for all activities were produced in one or more modes, with diameters below 0.8 μm at average concentrations up to 0.75 cm?3. These particles occurred at varying concentrations, during all respiratory activities, including normal breathing. A second mode at 1.8 μm was produced during all activities, but at lower concentrations of up to 0.14 cm?3.Speech produced additional particles in modes near 3.5 and 5 μm. These two modes became most pronounced during sustained vocalization, producing average concentrations of 0.04 and 0.16 cm?3, respectively, suggesting that the aerosolization of secretions lubricating the vocal chords is a major source of droplets in terms of number.For the entire size range examined of 0.3–20 μm, average particle number concentrations produced during exhalation ranged from 0.1 cm?3 for breathing to 1.1 cm?3 for sustained vocalization.Non-equilibrium droplet evaporation was not detectable for particles between 0.5 and 20 μm, implying that evaporation to the equilibrium droplet size occurred within 0.8 s.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号