首页 | 本学科首页   官方微博 | 高级检索  
     

铁路运输信息数据分类算法的研究与实现
引用本文:张垒磊,刘胜辉. 铁路运输信息数据分类算法的研究与实现[J]. 信息技术, 2005, 29(7): 70-73
作者姓名:张垒磊  刘胜辉
作者单位:1. 哈尔滨铁路局信息技术中心,哈尔滨,150001
2. 哈尔滨理工大学,哈尔滨,150080
摘    要:介绍两种基于统计的自动分类技术(朴素贝叶斯分类器、支持向量机分类器),剖析了基于统计的自动分类的优势及不足。基于统计的自动分类的不足主要表现为:当类别之间分类特征的交叉变大时,分类精度呈下降趋势,在多层分类的情况下,此局限尤为突出。针对此局限性.为了提高自动分类的精度,我们引入了基于规则的自动分类来对其进行改进和扩充,并整合两种自动分类技术的优点,设计出了混合分类器系统,应用于铁路运输信息系统,进行分类分析,从而获得了比较理想的分类效果。

关 键 词:信息处理  数据挖掘  数据分类  规则分类
文章编号:1009-2552(2005)07-0070-04
修稿时间:2005-01-25

Study and realization of TMIS data automatic classification arithmetic
ZHANG Lei-lei,LIU Sheng-hui. Study and realization of TMIS data automatic classification arithmetic[J]. Information Technology, 2005, 29(7): 70-73
Authors:ZHANG Lei-lei  LIU Sheng-hui
Affiliation:ZHANG Lei-lei~1,LIU Sheng-hui~2
Abstract:The technique of data automatic classification is to classify data into one or more classes according to certain strategy.This paper firstly reports two kinds of technique of data automatic category based on statistics(austerity Bayes classifier and supporting vector machine classifier),and analyses their advantages and disadvantages. The weakness of statistics-based automatic category is that the category precision decreases while the character intersection within classes increases, especially in the case of multi-layers classifying. In order to improve automatic category performance, rule-based automatic category is used.Combining statistics-based category with rule-based classifying method, this paper designs and realizes a system of mixing category lastly applied to TMIS, which has very good performance in category.
Keywords:information processing  data mining  data classification  rule-based classifying  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号