首页 | 本学科首页   官方微博 | 高级检索  
     


Combined effect of special grain boundaries and grain boundary carbides on IGSCC of Ni–16Cr–9Fe–xC alloys
Authors:Bogdan Alexandreanu  Brent Capell  Gary S Was  
Abstract:Susceptibility to intergranular stress corrosion cracking in Ni–16Cr–9Fe–xC alloys in 360°C primary water is reduced with increasing fraction of special grain boundaries, i.e. coincident site lattice boundaries (CSLB) and low angle boundaries, and grain boundary carbides. Intergranular stress corrosion cracking (IGSCC) was investigated using interrupted constant extension rate tensile tests in a primary water environment at 360°C. Thermal–mechanical treatments were used to increase the fraction of special boundaries from approximately 20–25% to between 30 and 40%. In a carbon-doped heat, further heat treating was used to precipitate grain boundary carbides preferentially on high-angle boundaries (HAB). Orientation imaging microscopy was used to determine the relative grain misorientations and scanning electron microscopy (SEM) was used to identify specific grain boundaries after each interruption. After each strain increment, the same regions in each sample were examined for cracking. Results showed that irrespective of the microstructure condition, CSLBs always cracked less than HABs. Results also showed that IGSCC is reduced with increasing solution carbon content, and for the same amount of carbon in solution, the addition of grain boundary carbides reduced IGSCC still further. The best microstructure was the one consisting of an enhanced CSLB fraction and chromium carbides precipitated preferentially on high-angle boundaries.
Keywords:IGSCC  Alloy 600  CSLB  Carbide
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号