首页 | 本学科首页   官方微博 | 高级检索  
     


Discrete mesoscopic modeling for the simulation of woven-fabric reinforcement forming
Authors:David Jauffrès  James A. Sherwood  Corey D. Morris  Julie Chen
Affiliation:1.Department of Mechanical Engineering,University of Massachusetts Lowell,Lowell,USA
Abstract:A discrete modeling approach is proposed to simulate woven-fabric reinforcement forming via explicit finite element analysis. The tensile behaviour of the yarns is modeled by truss, beam or seatbelt elements, and the shearing behaviour of the fabric is incorporated within shell or membrane elements. This method is easy to set up using the user-defined material subroutine capabilities of explicit finite element programs. In addition, the determination of the material parameters is straightforward from conventional tensile and shear-frame tests. The proposed approach has been implemented in the ABAQUS and LS-DYNA explicit finite element programs. Two types of fabric, a plain-weave and a twill-weave Twintex® (commingled polypropylene and glass fibres) were characterized and used to validate the modeling approach. For this validation, shear-frame and bias-extension tests have been modeled, and the finite element results are compared to experimental data. The determination of experimental shear angle contours was possible via Digital Image Correlation (DIC). The finite element results from ABAQUS and LS-DYNA are similar and agree well with the experimental data. As an example of the capabilities of the method, the deep drawing of a hemisphere is simulated using both finite elements programs.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号