首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于手形特征点匹配的身份认证方法
引用本文:孙冬梅, 裘正定, 何冰. 一种基于手形特征点匹配的身份认证方法[J]. 电子与信息学报, 2003, 25(3): 412-418.
作者姓名:孙冬梅  裘正定  何冰
作者单位:北方交通大学信息所,北京,100044
基金项目:九五攻关项目“可视通信平台的研究与实现”
摘    要:该文提出了一种基于手形的身份认证方法。该方法首先通过对手形图像的处理,将手形表示为由一系列有序点构成的特征点集,然后应用基于确定性退火技术的点匹配算法对两个手形的特征点集进行匹配,得到用于认证的两个匹配参数:平均匹配误差和匹配率,最后设计适当的分类器,对匹配结果进行分类判决,实现身份认证。考虑到在手形认证的研究中都是小样本情况,因此首次将建立在统计学习理论(SLT)基础之上的支持向量机(SVM)应用于手形的认证中,得到的结果是令人满意的。实验证明,与现有的手形认证方法相比,该文的方法不仅提高了认证的准确性,而且增强了认证的鲁棒性。

关 键 词:生物特征识别技术   认证   手形   点匹配   支持向量机
收稿时间:2001-10-18
修稿时间:2001-10-18

Atuomated identity verification based on feature points matching of hand shapes
Sun Dongmei, Qiu Zhengding, He Bing . Atuomated identity verification based on feature points matching of hand shapes[J]. Journal of Electronics & Information Technology, 2003, 25(3): 412-418.
Authors:Sun Dongmei  Qiu Zhengding  He Bing
Affiliation:Institute of Information Science Northern Jiaotong University Beijing 100044 China
Abstract:This paper presents a method for identity verification based on matching of hand shapes. The method first represents the shapes of hands by sets of ordered points. Next, the two sets of points are matched using point matching algorithm based on deterministic annealing and get the two matching parameters: mean matching error and matching rate. Finally, the classifier is designed for classification/verification. Considering the research of hand shape verification usually works in practical cases of limited or small samples, Support Vector Machine (SVM) is developed for verification. SVM is a new technique in the field of Statistical Learning Theory (SLT). The preliminary results show that the method can obtain higher levels of accuracy and robustness than the existing systems that based on hand geometry measurements.
Keywords:Biometrics   Verification   Hand shapes   Point matching   Support vector machine (SVM)
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号