首页 | 本学科首页   官方微博 | 高级检索  
     

基于属性子空间的孤立点内涵知识挖掘
引用本文:王越,刘亚辉,谭暑秋. 基于属性子空间的孤立点内涵知识挖掘[J]. 计算机科学, 2011, 38(3): 199-202
作者姓名:王越  刘亚辉  谭暑秋
作者单位:重庆理工大学计算机科学与工程学院,重庆,400050
基金项目:本文受重庆市科技攻关资金项目(CSTC, 2009AB2049;CSTC, 2009AC2068)资助。
摘    要:孤立点通常都包含着重要的信息,挖掘出孤立点的内涵知识可以帮助用户更好地认知数据。通过给出的孤立点的原因属性子空间及其孤立度和孤立点的相似度等概念,提出了一个基于属性子空间的孤立点内涵知识挖掘算法,得到了每个孤立点的原因属性集,并结合聚类的思想把孤立点按照其相似性特征进行了分类,使每一类中的所有孤立点在一定精度下都具有相同的原因属性集。实验结果表明该算法是有效和实用的,且易用性较强。

关 键 词:孤立点,属性子空间,孤立点相似度,内涵知识

Finding Intentional Knowledge of Outliers Based on Attribute Subspace
WANG Yue,LIU Ya-hui,TAN Shu-qiu. Finding Intentional Knowledge of Outliers Based on Attribute Subspace[J]. Computer Science, 2011, 38(3): 199-202
Authors:WANG Yue  LIU Ya-hui  TAN Shu-qiu
Affiliation:(College of Computer Science and Engineering,Chongqing University of Technology,Chongqing 400050,China)
Abstract:Outliers usually contain important information, it can help improving the users' understanding of the data.New definitions of cause attribute subspace of outliers, degree of cause attribute subspace and similarity of outlicrs were given, and then an algorithm for finding intentional knowledge of outliers based on attribute subspace was proposed, the approach can obtain the cause attributes set of every outlier. Then the outliers were classified by their similarity combined with the thinking of clustering, all the outliers of every class have the same cause attributes set under certain precision. The experiment results show that the algorithm is effective and practical,and more ease of use.
Keywords:Outlicrs  Attribute subspace  0utlicrs similarity  Intentional knowledge
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号