首页 | 本学科首页   官方微博 | 高级检索  
     


Quantum Dot‐Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single Cells
Authors:Patricia Haro‐González  William T Ramsay  Laura Martinez Maestro  Blanca del Rosal  Karla Santacruz‐Gomez  Maria del Carmen Iglesias‐de la Cruz  Francisco Sanz‐Rodríguez  Jing Yuang Chooi  Paloma Rodriguez Sevilla  Marco Bettinelli  Debaditya Choudhury  Ajoy K Kar  José García Solé  Daniel Jaque  Lynn Paterson
Affiliation:1. Laboratorio di Chimica dello Stato Solido, DB, Università di Verona and INSTM, UdR Verona, Ca' Vignal, Strada Le Grazie 15, I‐37134 Verona, Italy;2. Scottish Universities Physics Alliance (SUPA), Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering & Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, Midlothian, Scotland;3. Fluorescence Imaging Group, Departamento de Física de Materiales, C‐IV, Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7, Madrid, 28049, Spain;4. Centro de Investigación en Materiales Avanzados, CIMAV, Departmento de Fisica, Universidad de Sonora, A.P 1626 Hermosillo, Sonora, México;5. Departamento de Física, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, C.P. 83000, Hermosillo, Sonora, México;6. Scottish Universities Physics Alliance (SUPA), Institute of Photonic and Quantum Sciences, School of Engineering & Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, Midlothian, Scotland
Abstract:Laser‐induced thermal effects in optically trapped microspheres and single cells are investigated by quantum dot luminescence thermometry. Thermal spectroscopy has revealed a non‐localized temperature distribution around the trap that extends over tens of micrometers, in agreement with previous theoretical models besides identifying water absorption as the most important heating source. The experimental results of thermal loading at a variety of wavelengths reveal that an optimum trapping wavelength exists for biological applications close to 820 nm. This is corroborated by a simultaneous analysis of the spectral dependence of cellular heating and damage in human lymphocytes during optical trapping. This quantum dot luminescence thermometry demonstrates that optical trapping with 820 nm laser radiation produces minimum intracellular heating, well below the cytotoxic level (43 °C), thus, avoiding cell damage.
Keywords:nanothermometry  optical trapping  quantum dots  microspheres  single cells
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号