首页 | 本学科首页   官方微博 | 高级检索  
     


Multiwall Carbon Nanotubes Mediate Macrophage Activation and Promote Pulmonary Fibrosis Through TGF‐β/Smad Signaling Pathway
Authors:Peng Wang  Xin Nie  Yue Wang  Yang Li  Cuicui Ge  Lili Zhang  Liming Wang  Ru Bai  Zhiyun Chen  Yuliang Zhao  Chunying Chen
Affiliation:1. CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China;2. CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract:Multiwall carbon nanotubes (MWCNTs) have been widely used in many disciplines due to their unique physical and chemical properties, but have also raised great concerns about their possible negative health impacts, especially through occupational exposure. Although recent studies have demonstrated that MWCNTs induce granuloma formation and/or fibrotic responses in the lungs of rats or mice, their cellular and molecular mechanisms remain largely unaddressed. Here, it is reported that the TGF‐β/Smad signaling pathway can be activated by MWCNTs and play a critical role in MWCNT‐induced pulmonary fibrosis. Firstly, in vivo data show that spontaneously hypertensive (SH) rats administered long MWCNTs (20–50 μm) but not short MWCNTs (0.5–2 μm) exhibit increased fibroblast proliferation, collagen deposition and granuloma formation in lung tissue. Secondly, the in vivo experiments also indicate that only long MWCNTs can significantly activate macrophages and increase the production of transforming growth factor (TGF)‐β1, which induces the phosphorylation of Smad2 and then the expression of collagen I/III and extracellular matrix (ECM) protease inhibitors in lung tissues. Finally, the present in vitro studies further demonstrate that the TGF‐β/Smad signaling pathway is indeed necessary for the expression of collagen III in fibroblast cells. Together, these data demonstrate that MWCNTs stimulate pulmonary fibrotic responses such as fibroblast proliferation and collagen deposition in a TGF‐β/Smad‐dependent manner. These observations also suggest that tube length acts as an important factor in MWCNT‐induced macrophage activation and subsequent TGF‐β1 secretion. These in vivo and in vitro studies further highlight the potential adverse health effects that may occur following MWCNT exposure and provide a better understanding of the cellular and molecular mechanisms by which MWCNTs induce pulmonary fibrotic reactions.
Keywords:multiwall CNTs  pulmonary fibrosis  TGF‐β  /Smad signaling  collagen deposition
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号