首页 | 本学科首页   官方微博 | 高级检索  
     


Prediction of orthotropic mechanical properties of plain‐weave composites with matrix voids using unit cells at multi‐scales
Authors:Hongzhou Li  Xinyu Fan  Chun Yan
Affiliation:Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, , Ningbo 315201, China
Abstract:A numerical procedure for predicting the orthotropic mechanical properties of plain‐weave composites with matrix voids through a combined approach of the representative volume element method and finite element analyses is presented. The representative volume element method was implemented using two unit cells established at different length scales with equation boundary conditions. By considering the presence of randomly scattered voids throughout the matrix induced during the manufacturing process, it was assumed in the simulation that the spatial distribution of matrix voids is completely random. The procedure was exemplified with a glass fiber‐reinforced (plain‐weave fabric) epoxy composite with matrix voids. Sensitivity studies were conducted to quantify the influence of fiber volume fraction and mechanical properties of the constituent phases on the orthotropic mechanical properties of the composite. The numerical procedure, which can be implemented in ABAQUS, is an efficient tool for guiding the design of plain‐weave composites at materials level and also provides effective properties of such composites for the design optimization of engineering structures made of such composite materials. © 2012 Society of Chemical Industry
Keywords:composites  symmetric unit cell  multi‐scale modeling  finite element method  orthotropic mechanical properties  matrix voids
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号