首页 | 本学科首页   官方微博 | 高级检索  
     

基于混合特征的运动目标跟踪方法
引用本文:任楠,杜军平,朱素果,李玲慧,Jang Myung Lee. 基于混合特征的运动目标跟踪方法[J]. 北京邮电大学学报, 2016, 39(6): 88-92,98. DOI: 10.13190/j.jbupt.2016.06.017
作者姓名:任楠  杜军平  朱素果  李玲慧  Jang Myung Lee
作者单位:1. 北京邮电大学 计算机学院, 北京 100876;
2. 韩国釜山国立大学 电子工程系, 韩国 釜山
基金项目:国家自然科学基金项目(61320106006
摘    要:为了应对运动目标跟踪任务中目标的尺度、光照变化和形变等情况,提出了一种基于混合特征的运动目标跟踪方法--SoH-DLT,综合考虑了运动目标的轮廓特征和细节特征.在粒子滤波跟踪过程中引入方向直方图描述目标轮廓特征,保证与目标最相似的粒子在尺度、光照变化和形变的情况下仍能获得较高的置信度,并作为跟踪结果输出.结合深度学习获得的高层特征和具有尺度不变性的加速鲁棒特征计算粒子权重,提高了复杂运动场景下目标跟踪的准确度,强化了SoH-DLT方法对尺度变化运动目标跟踪的鲁棒性.实验结果表明,SoH-DLT与其他方法相比获得了更好的跟踪效果.

关 键 词:运动目标跟踪  轮廓特征  神经网络  方向直方图  加速鲁棒特征  粒子滤波  
收稿时间:2016-01-19

Robust Visual Tracking Based on Mixed Features
REN Nan,DU Jun-ping,ZHU Su-guo,LI Ling-hui,JangMyung Lee. Robust Visual Tracking Based on Mixed Features[J]. Journal of Beijing University of Posts and Telecommunications, 2016, 39(6): 88-92,98. DOI: 10.13190/j.jbupt.2016.06.017
Authors:REN Nan  DU Jun-ping  ZHU Su-guo  LI Ling-hui  JangMyung Lee
Affiliation:1. School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2. Department of Electronics Engineering, Korea Pusan National University, Busan, Korea
Abstract:In order to deal with scale variation, illumination changes and deformation of the target in tracking tasks, a visual tracking algorithm based on mixed features, called SoH-DLT, was proposed, considering both the contour features and detail features. Orientation histogram is introduced to describe the contour features of candidate samples in the process of particle filter, ensuring that the particle which is the most similar with the target can still get a high degree of confidence and can be output as the result of tracking in the case of scale, illumination changes and deformation. Speed-up robust features ( SURF) feature and high-level features from deep learning are integrated to calculate the weights of particles, im-proving the tracking accuracy in complex scenes and enhancing the robustness of SoH-DLT to scale varia-tion. Experiments show that SoH-DLT algorithm has better tracking performance than the contrast algo-rithms in both quantitative and qualitative evaluation.
Keywords:visual tracking  contour feature  neural network  orientation histogram  speed-up robust features  particle filter
本文献已被 万方数据 等数据库收录!
点击此处可从《北京邮电大学学报》浏览原始摘要信息
点击此处可从《北京邮电大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号