首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法优化的稀疏表示图像融合算法
引用本文:赵学军,李育珍,雷书彧. 基于遗传算法优化的稀疏表示图像融合算法[J]. 北京邮电大学学报, 2016, 39(2): 73-76,87. DOI: 10.13190/j.jbupt.2016.02.015
作者姓名:赵学军  李育珍  雷书彧
作者单位:中国矿业大学(北京)机电与信息工程学院, 北京 100083
基金项目:国家高技术研究发展计划(863计划)项目(2012AA12A308
摘    要:关于稀疏表示理论的图像融合主要是利用加权系数方法来确定稀疏系数的融合规则,通过遗传算法求解最优加权系数,实现全色图像和多光谱图像的融合.所提算法与Contourlet变换、主成分分析算法和高通滤波等遥感图像融合算法相比,在提高图像清晰度的同时,光谱保真度相对较高.

关 键 词:遗传算法  稀疏表示  图像融合  
收稿时间:2015-05-29

An Image Fusion Method with Sparse Representation Based on Genetic Algorithm Optimization
ZHAO Xue-jun,LI Yu-zhen,LEI Shu-yu. An Image Fusion Method with Sparse Representation Based on Genetic Algorithm Optimization[J]. Journal of Beijing University of Posts and Telecommunications, 2016, 39(2): 73-76,87. DOI: 10.13190/j.jbupt.2016.02.015
Authors:ZHAO Xue-jun  LI Yu-zhen  LEI Shu-yu
Affiliation:School of Mechanical Electronic and Information Engineering, China University of Mining and Technology, Beijing 100083, China
Abstract:Due to sparse nature of the nature of image, the sparse signal representation theory can be well used in image processing, and with sparse representation theory of continuous improvement, it is also widely used in image de-noising rehabilitation and integration process. The sparse representation of image fusion theory was used to determine the weighting factor fusion rules sparse coefficients, and to solve the optimal weighting coefficients of genetic algorithm to achieve image fusion panchromatic, multispectral images, contourlet transform, principal component analysis ( PCA) algorithm and the high-pass filter im-age fusion algorithm. Also it improves the image clarity spectral fidelity compared to other algorithms.
Keywords:genetic algorithms  sparse representation  image fusion
本文献已被 万方数据 等数据库收录!
点击此处可从《北京邮电大学学报》浏览原始摘要信息
点击此处可从《北京邮电大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号