首页 | 本学科首页   官方微博 | 高级检索  
     

基于相关性和稀疏表示的运动想象脑电通道选择方法
引用本文:孟明, 董芝超, 高云园, 孔万增. 基于相关性和稀疏表示的运动想象脑电通道选择方法[J]. 电子与信息学报, 2022, 44(2): 477-485. doi: 10.11999/JEIT210778
作者姓名:孟明  董芝超  高云园  孔万增
作者单位:1.杭州电子科技大学自动化学院 杭州 310018;;2.浙江省脑机协同智能重点实验室 杭州 310018
基金项目:国家自然科学基金(61871427% 61971168% U20B2074)
摘    要:在基于运动想象(MI)的脑机接口(BCI)中,通常采用较多通道的脑电信号(EEG)来提高分类精度,但其中会有包含与MI任务无关或冗余信息的通道,从而影响BCI的性能提升。该文针对运动想象脑电分类中的通道选择问题,提出一种采用相关性和稀疏表示对通道进行选择的方法(CSR-CS)。首先计算训练样本每个通道的皮尔逊相关系数来选择显著通道,然后提取显著通道所在区域的滤波器组共空间模式特征拼接成字典,利用由字典所得到的非零稀疏系数的个数表征每个区域的分类能力,选出显著区域所包含的显著通道作为最优通道,最后采用共空间模式和支持向量机分别进行特征提取与分类。在对BCI第3次竞赛数据集IVa和BCI第4次竞赛数据集I两个二分类MI任务的分类实验中,平均分类精度达到了88.61%和83.9%,表明所提通道选择方法的有效性和鲁棒性。

关 键 词:脑机接口   运动想象   共空间模式   支持向量机   通道选择
收稿时间:2021-08-04
修稿时间:2021-12-09

Correlation and Sparse Representation Based Channel Selection of Motor Imagery Electroencephalogram
MENG Ming, DONG Zhichao, GAO Yunyuan, KONG Wanzeng. Correlation and Sparse Representation Based Channel Selection of Motor Imagery Electroencephalogram[J]. Journal of Electronics & Information Technology, 2022, 44(2): 477-485. doi: 10.11999/JEIT210778
Authors:MENG Ming  DONG Zhichao  GAO Yunyuan  KONG Wanzeng
Affiliation:1. School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China;;2. Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
Abstract:In Motor Imagery (MI) based Brain Computer Interface (BCI), more channels of ElectroEncephaloGram (EEG) signal are usually adopted to improve the classification accuracy. But there will be channels containing irrelevant or redundant information about MI tasks, which degenerate the performance improvement of BCI. A Channel Selection method based on Correlation and Sparse Representation (CSR-CS) is proposed for EEG classification. Firstly, the Pearson correlation coefficient of each channel of the training sample is calculated to select the significant channels. Then the filter bank common spatial pattern features of the region where the significant channels are located are extracted and spliced into a dictionary. The number of non-zero sparse coefficients obtained from the dictionary is used to characterize the classification ability of each region, and the significant channels contained in the significant regions are selected as the optimal channels. Finally, the common spatial pattern and support vector machine are employed for feature extraction and classification respectively. In the classification experiments of two categories of MI task with BCI competition III dataset IVa and BCI competition IV dataset I, the average classification accuracy reaches 88.61% and 83.9%, which indicates the effectiveness and robustness of the proposed channel selection method.
Keywords:Brain Computer Interface (BCI)  Motor Imagery (MI)  Common spatial pattern  Support Vector Machine (SVM)  Channel selection
本文献已被 万方数据 等数据库收录!
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号