首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进U-Net网络的甲状腺结节超声图像分割方法
引用本文:王波, 李梦翔, 刘侠. 基于改进U-Net网络的甲状腺结节超声图像分割方法[J]. 电子与信息学报, 2022, 44(2): 514-522. doi: 10.11999/JEIT210015
作者姓名:王波  李梦翔  刘侠
作者单位:1.哈尔滨理工大学自动化学院 哈尔滨 150080;;2.黑龙江省复杂智能系统与集成重点实验室 哈尔滨 150080
基金项目:国家自然科学基金(61172167),哈尔滨理工大学“理工英才”计划科学研究项目(LGYC2018JC013),黑龙江省青年科学基金项目(QC2017076)
摘    要:
针对甲状腺结节尺寸多变、超声图像中甲状腺结节边缘模糊导致难以分割的问题,该文提出一种基于改进U-net网络的甲状腺结节超声图像分割方法。该方法首先将图片经过有残差结构和多尺度卷积结构的编码器路径进行降尺度特征提取;然后,利用带有注意力模块的跳跃长连接部分对特征张量进行边缘轮廓保持操作;最后,使用带有残差结构和多尺度卷积结构的解码器路径得到分割结果。
实验结果表明,该文所提方法的平均分割Dice值达到0.7822,较传统U-Net方法具有更优的分割性能。


关 键 词:图像分割   甲状腺结节超声图像   注意力机制   U-Net
收稿时间:2021-01-05
修稿时间:2021-03-31
本文献已被 万方数据 等数据库收录!
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号