首页 | 本学科首页   官方微博 | 高级检索  
     

基于希尔伯特黄变换和深度卷积神经网络的房颤检测
引用本文:郭一楠, 邵慧杰, 巩敦卫, 李海泉, 陈丽. 基于希尔伯特黄变换和深度卷积神经网络的房颤检测[J]. 电子与信息学报, 2022, 44(1): 99-106. doi: 10.11999/JEIT211171
作者姓名:郭一楠  邵慧杰  巩敦卫  李海泉  陈丽
作者单位:1.中国矿业大学人工智能研究院智慧医疗研究中心 徐州 221116;;2.中国矿业大学信息与控制工程学院 徐州 221116;;3.徐州医科大学第二附属医院呼吸与危重医学科 徐州 221006
基金项目:国家自然科学基金(61973305),中国矿业大学中央高校基本科研业务费专项资金(2020ZDPY0302)
摘    要:房颤是一种常见的心律失常,其发病率会随着年龄增长而升高。因此,从心电(ECG)信号中尽早识别出房颤,有助于降低中风风险和心源性死亡率。为有效提高其检测准确率,该文提出一种基于希尔伯特黄变换(HHT)和深度卷积神经网络的房颤检测方法。1维的时域心电信号通过希尔伯特黄变换,转换为时频域信号,旨在通过时频分析,丰富原始信号的特征。进而,采用DenseNet深度卷积神经网络来处理精细的时频图,并在迭代过程中选出最佳检测模型。该方法获得的最佳检测模型在麻省理工学院-贝斯以色列医院(MIT-BIH)和2017年生理信号竞赛(2017 PhysioNet Challenge)的房颤数据集上分别取得了99.11%和97.25%的检测准确率。此外,该文将希尔伯特黄变换与其他时频分析方法以及稠密网络(DenseNet)与其他卷积神经网络进行了对比。相比于其他检测方法,实验结果表明希尔伯特黄变换和深度卷积神经网络(DCNN)为房颤检测提供了更加准确的识别方式。

关 键 词:心电信号   房颤   希尔伯特黄变换   深度卷积神经网络
收稿时间:2021-10-26
修稿时间:2021-12-24

Atrial Fibrillation Detection Based on Hilbert-Huang Transform and Deep Convolutional Neural Network
GUO Yinan, SHAO Huijie, GONG Dunwei, LI Haiquan, CHEN Li. Atrial Fibrillation Detection Based on Hilbert-Huang Transform and Deep Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2022, 44(1): 99-106. doi: 10.11999/JEIT211171
Authors:GUO Yinan  SHAO Huijie  GONG Dunwei  LI Haiquan  CHEN Li
Affiliation:1. Research Institute of Artificial Intelligence, China University of Mining and Technology, Xuzhou 221116, China;;2. School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China;;3. Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
Abstract:Atrial fibrillation is a common arrhythmia and its morbidity increases with age. Thus, stroke risk and cardiogenic mortality can be significantly reduced by early atrial fibrillation detection from ElectroCardioGram (ECG). In order to improve effectively detection accuracy, a novel approach is proposed to detect atrial fibrillation based on Hilbert-Huang Transform(HHT) and deep convolutional neural network. HHT is employed to transform electrocardiogram from time domain to time-frequency domain so as to enrich the feature of original data. Following that, DenseNet is introduced to deal with the detailed graph and the best model is selected during the iteration. The optimal model obtained by the proposed method achieves 99.11% and 97.25% accuracy respectively on the Massachusetts Institute of Technology - Beth Israel Hospital(MIT-BIH) and 2017 PhysioNet Challenge atrial fibrillation databases. In addition, HHT and DenseNet are compared with other time-frequency analysis and convolutional neural networks, respectively. Compared with some existing methods, the results proved that atrial fibrillation detection by HHT and Deep Convolutional Neural Network(DCNN) obtains a high detection performance.
Keywords:ElectroCardioGram (ECG)  Atrial fibrillation  Hilbert-Huang Transform (HHT)  Deep Convolutional Neural Network (DCNN)
本文献已被 万方数据 等数据库收录!
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号