首页 | 本学科首页   官方微博 | 高级检索  
     


Cryogenic helium gas circulation system for advanced characterization of superconducting cables and other devices
Authors:Sastry Pamidi  Chul Han Kim  Jae-Ho Kim  Danny Crook  Steinar Dale
Affiliation:1. NASA Kennedy Space Center, M/S: NE-F6 Kennedy Space Center, FL, USA, 32899;2. NASA Marshall Space Flight Center, M/S:ER-24 Huntsville, AL, USA, 35812;1. Industrial Research Ltd., 69 Gracefield Road, Lower Hutt 5010, New Zealand;2. HTS-110 Ltd., 69 Gracefield Road, Lower Hutt 5010, New Zealand;1. Nexans Deutschland GmbH, Kabelkamp 20, 30179 Hannover, Germany;2. RWE Deutschland AG, Kruppstraße 5, 45128 Essen, Germany;3. Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany;4. Leibniz Universität Hannover, Appelstraße 9A, 30167 Hannover, Germany;5. Nexans SuperConductors GmbH, Chemiepark Knapsack, 50351 Hürth, Germany;1. Technical University of Delft, 2600 GA, The Netherlands;2. nkt cables group, Priorparken 560, 2605 Brondby, Denmark;3. Department of Electrical Engineering, Technical University of Denmark, DTU, 2800 Lyngby, Denmark;4. Alliander, The Netherlands;1. Karlsruhe Institute of Technology, Karlsruhe, Germany;2. Institute for Advanced Sustainability Studies, Potsdam, Germany;3. Columbus Superconductors, Genova, Italy
Abstract:A versatile cryogenic test bed, based on circulating cryogenic helium gas, has been designed, fabricated, and installed at the Florida State University Center for Advanced Power Systems (FSU-CAPS). The test bed is being used to understand the benefits of integrating the cryogenic systems of multiple superconducting power devices. The helium circulation system operates with four sets of cryocooler and heat exchanger combinations. The maximum operating pressure of the system is 2.1 MPa. The efficacy of helium circulation systems in cooling superconducting power devices is evaluated using a 30-m-long simulated superconducting cable in a flexible cryostat. Experiments were conducted at various mass flow rates and a variety of heat load profiles. A 1-D thermal model was developed to understand the effect of the gas flow parameters on the thermal gradients along the cable. Experimental results are in close agreement with the results from the thermal model.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号