首页 | 本学科首页   官方微博 | 高级检索  
     


Physiological and induced neuronal death are not affected in NSE-bax transgenic mice
Authors:R Bernard  S Dieni  S Rees  O Bernard
Affiliation:Department of Anatomy and Histology, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Greece.
Abstract:The intracortical organization of the noradrenaline (NA) and vasoactive intestinal polypeptide (VIP) systems provides ample opportunity for functional convergence, and accumulated evidence indicates that NA and VIP share certain cellular actions upon both neuronal and nonneuronal cortical elements. In the present study, a double immunolabeling method was combined with a silver-gold intensification procedure to examine the ultrastructural relationships of the NA coeruleocortical afferents and the intrinsic VIP neurons with three main constituents of the cortex: neurons, astrocytes, and blood vessels. Electron microscopy of singly or doubly labeled material indicated that NA and VIP boutons are engaged in a variety of anatomical relationships with both neuronal and nonneuronal elements. Dendritic shafts and perikarya of nonpyramidal neurons, some of which are VIP positive, receive combined NA and VIP synapses. A significant number of cortical microvessels are in intimate contact with NA or VIP profiles. NA axons often form perivascular loops, and VIP dendritic shafts of large diameter are frequently observed to bend around the vessel circumference. Serial section examination demonstrates that some NA boutons are directly apposed to the capillary wall at sites of glial end-feet discontinuities, whereas VIP boutons contact astrocytic sleeves of capillaries but never cross the perivascular astroglial barrier. Some VIP dendrites containing coated vesicles make intimate contact with the capillary basal lamina. Astrocytic perikarya, mainly in the supragranular layers, are also directly apposed to NA and/or VIP elements. These complex anatomical relationships provide a structural basis for the known interactions between NA and VIP in the control of cortical metabolism and function.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号