首页 | 本学科首页   官方微博 | 高级检索  
     


Vacuolar H(+)-ATPase and plasma membrane H(+)-ATPase contribute to the tolerance against high-pressure carbon dioxide treatment in Saccharomyces cerevisiae
Authors:Watanabe Taisuke  Furukawa Soichi  Kitamoto Katsuhiko  Takatsuki Akira  Hirata Ryogo  Ogihara Hirokazu  Yamasaki Makari
Affiliation:Laboratory of Food Microbiology, Department of Food Science and Technology, College of Bioresource Sciences, Nihon University, 1866, Kameino, Fujisawa-shi, Kanagawa 252-8510, Japan.
Abstract:As a non-thermal sterilization process, high-pressure carbon dioxide treatment (HPCT) is considered to be promising. The main sterilizing effect of HPCT is thought to be acidification in cytoplasm of microorganisms. We investigated the tolerance mechanism of Saccharomyces cerevisiae to HPCT with special reference to vacuolar and plasma membrane H(+)-ATPases. HPCT was imposed at 35 degrees C, 4 to 10 MPa, for 10 min. slp1 mutant defective in vacuole morphogenesis was more sensitive to HPCT than its isogenic parent. Concanamycin A, a specific inhibitor of vacuolar H(+)-ATPase (V-ATPase), at 10 microM rendered the parent more HPCT-sensitive to the level of slp1. To confirm further the contribution of V-ATPase to the tolerance against HPCT in S. cerevisiae, we compared vma1 mutant of V-ATPase with its isogenic parent for their HPCT sensitivity. vma1 mutant was more sensitive to HPCT than its parent. Addition of 10 microM vanadate, an inhibitor of plasma membrane H(+)-ATPase (P-ATPase), to the wild type strains also increased the inactivation ratio. These results clearly show that V- and P-ATPases contribute to the tolerance against HPCT in S. cerevisiae by accumulating excess H(+) from cytoplasm to vacuole and excluding H(+) outside of the cell, respectively.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号