首页 | 本学科首页   官方微博 | 高级检索  
     


Highly luminescent columnar ZnO films grown directly on n-Si and p-Si substrates by low-temperature electrochemical deposition
Authors:Oleg Lupan  Thierry Pauporté  IM Tiginyanu
Affiliation:a Laboratoire d’Electrochimie, Chimie des Interfaces et Modélisation pour l’Energie (LECIME), UMR 7575 CNRS, Chimie ParisTech, 11 rue P. et M. Curie, 75231 Paris cedex 05, France
b Institute of Electronic Engineering and Nanotechnologies, Institute of Applied Physics, Academy of Sciences of Moldova, MD-2028 Chisinau, Republic of Moldova
Abstract:In this study, nanocolumnar zinc oxide thin films were catalyst-free electrodeposited directly on n-Si and p-Si substrates, what makes an important junction for optoelectronic devices. We demonstrate that ZnO thin films can be grown on Si at low cathodic potential by electrochemical synthesis. The scanning electron microscopy SEM showed that the ZnO thin films consist of nanocolumns with radius of about 150 nm on n-Si and 200 nm on p-Si substrates, possess uniform size distribution and fully covers surfaces. X-ray diffraction (XRD) measurements show that the films are crystalline material and are preferably grown along (0 0 2) direction. The impact of thermal annealing in the temperature range of 150-800 °C on ZnO film properties has been carried out. Low-temperature photoluminescence (PL) spectra of the as-prepared ZnO/Si samples show the extremely high intensity of the near bandgap luminescence along with the absence of visible emission. The optical quality of ZnO thin films was improved after post-deposition thermal treatment at 150 °C and 400 °C in our experiments, however, the luminescence intensity was found to decrease at higher annealing temperatures (800 °C). The obtained results indicate that electrodeposition is an efficient low-temperature technique for the growth of high-quality and crystallographically oriented ZnO thin films on n-Si and p-Si substrates for device applications.
Keywords:ZnO  Thin films  Electrodeposition  Photoluminescence  Annealing
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号