首页 | 本学科首页   官方微博 | 高级检索  
     

基于分布式模型预测控制的综合能源系统多时间尺度优化调度
引用本文:王磊,周建平,朱刘柱,王绪利,尹晨旭,丛昊. 基于分布式模型预测控制的综合能源系统多时间尺度优化调度[J]. 电力系统自动化, 2021, 45(13): 57-65. DOI: 10.7500/AEPS20200825006
作者姓名:王磊  周建平  朱刘柱  王绪利  尹晨旭  丛昊
作者单位:安徽省新能源利用与节能省级实验室(合肥工业大学),安徽省合肥市 230009;国网安徽省电力有限公司经济技术研究院,安徽省合肥市 230022
基金项目:国家自然科学基金区域创新发展联合基金资助项目(U19A20106);中央高校基本科研业务费专项资金资助项目(PA2020GDSK0098)。
摘    要:采用具有滚动优化、反馈校正特点的模型预测控制是实现综合能源系统多时间尺度优化调度的关键技术之一.鉴于集中式模型预测控制实现系统整体在线优化的复杂性,文中提出一种基于分布式模型预测控制的综合能源系统多时间尺度优化调度方法,通过各子系统协调配合实现综合能源系统灵活调度.首先,建立以系统日运行经济最优、系统日运行费用及机组启...

关 键 词:综合能源系统  模型预测控制  多时间尺度  在线优化  灵活调度
收稿时间:2020-08-25
修稿时间:2021-01-25

Multi-time-scale Optimization Scheduling of Integrated Energy System Based on Distributed Model Predictive Control
WANG Lei,ZHOU Jianping,ZHU Liuzhu,WANG Xuli,YIN Chenxu,CONG Hao. Multi-time-scale Optimization Scheduling of Integrated Energy System Based on Distributed Model Predictive Control[J]. Automation of Electric Power Systems, 2021, 45(13): 57-65. DOI: 10.7500/AEPS20200825006
Authors:WANG Lei  ZHOU Jianping  ZHU Liuzhu  WANG Xuli  YIN Chenxu  CONG Hao
Affiliation:1.Anhui Key Laboratory of New Energy Utilization and Energy Conservation (Hefei University of Technology), Hefei 230009, China;2.Economic and Technological Research Institute of State Grid Anhui Electric Power Co., Ltd., Hefei 230022, China
Abstract:The use of model predictive control with characteristics of rolling optimization and feedback correction is one of the key technologies to achieve multi-time-scale optimization scheduling of integrated energy systems. In view of the complexity of the centralized model predictive control to achieve the overall online optimization of the system, this paper proposes a multi-time-scale optimization scheduling method for the integrated energy system based on the distributed model predictive control, which realizes the flexible scheduling of the integrated energy system with the coordination of various subsystems. First, day-ahead and intra-day rolling optimization models are established with the objectives of optimal economy in daily operation of the system,the lowest system daily operation costs and unit on-off penalty costs. Then, at the real-time stage, an optimal scheduling strategy based on the distributed model predictive control is used to decompose the overall optimization problem. Each subsystem estimates the state according to the input sequence of the previous time of other subsystems and optimizes its performance index. Finally, through the coordinated control of various subsystems, the online optimization of the entire system is realized to meet its dynamic adjustment demands. The simulation results show that the proposed method can improve the economy of the system operation while improving the control performance of the system.
Keywords:integrated energy system  model predictive control  multi-time scale  online optimization  flexible scheduling
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电力系统自动化》浏览原始摘要信息
点击此处可从《电力系统自动化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号