首页 | 本学科首页   官方微博 | 高级检索  
     


Topical phenytoin nanostructured lipid carriers: design and development
Authors:Amira Motawea  Thanaa Borg
Affiliation:Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
Abstract:Phenytoin (PHT) is an antiepileptic drug that was reported to exhibit high wound healing activity. Nevertheless, its limited solubility, bioavailability, and inefficient distribution during topical administration limit its use. Therefore, this study aims to develop, characterize nanostructured lipid carriers (NLCs), and evaluate their potential in topical delivery of PHT to improve the drug entrapment efficiency and sustained release. The NLCs were prepared by hot homogenization followed by ultra sonication method using 23 factorial design. NLC formulations were characterized regarding their particle size (PS), zeta potential (ZP), entrapment efficiency percent (%EE), surface morphology, physicochemical stability, and in vitro release studies. The optimized NLC (F7) was further incorporated in 1%w/v carbopol gel and then characterized for appearance, pH, viscosity, stability, and in vitro drug release. The prepared NLCs were spherical in shape and possessed an average PS of 121.4–258.2?nm, ZP of (?15.4)–(–32.2)?mV, and 55.24–88.80 %EE. Solid-state characterization revealed that the drug is dispersed in an amorphous state with hydrogen bond interaction between the drug and the NLC components. NLC formulations were found to be stable at 25?°C for six months. The stored F7-hydrogel showed insignificant changes in viscosity and drug content (p>.05) up to six?months at 25?°C that pave a way for industrial fabrication of efficient PHT products. In vitro release studies showed a sustained release from NLC up to 48?h at pH 7.4 following non-Fickian Higuchi kinetics model. These promising findings encourage the potential use of phenytoin loaded lipid nanoparticles for future topical application.
Keywords:Phenytoin  nanostructured lipid carriers  particle size  topical  hydrogel
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号