首页 | 本学科首页   官方微博 | 高级检索  
     

基于突触可塑性的SNN随钻陀螺仪漂移处理
引用本文:杨金显,韩玉鑫,刘鹏威. 基于突触可塑性的SNN随钻陀螺仪漂移处理[J]. 电子科技, 2022, 35(4): 60-66. DOI: 10.16180/j.cnki.issn1007-7820.2022.04.010
作者姓名:杨金显  韩玉鑫  刘鹏威
作者单位:河南理工大学 电气工程与自动化学院,河南 焦作 454000
基金项目:河南省创新型科技人才队伍设工程;河南理工大学青年骨干教师资助计划;国家自然科学基金;河南省高等学校青年骨干教师培养计划项目
摘    要:针对随钻振动引起MEMS陀螺仪的数据漂移问题,文中提出了一种脉冲神经网络算法.首先根据陀螺仪漂移误差的时间特性,利用脉冲网络的脉冲时间编码陀螺仪的信息强度.然后利用Izhikevich神经元模型的突触可塑性,调节激发性突触电导并抑制性突触电导,增强网络的鲁棒性,从而提高陀螺仪信号对噪声的抗干扰能力.在不同振动频率下,分...

关 键 词:随钻振动  数据漂移  脉冲神经网络  突触可塑性  突触电导  点火率  膜电位相关性  抗干扰
收稿时间:2020-12-25

Drift Processing of Gyro While Drilling Based on Synaptic Plasticity Pulsed Neural Network
YANG Jinxian,HAN Yuxin,LIU Pengwei. Drift Processing of Gyro While Drilling Based on Synaptic Plasticity Pulsed Neural Network[J]. Electronic Science and Technology, 2022, 35(4): 60-66. DOI: 10.16180/j.cnki.issn1007-7820.2022.04.010
Authors:YANG Jinxian  HAN Yuxin  LIU Pengwei
Affiliation:School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo 454000,China
Abstract:In view of the data drift problem of MEMS gyroscope caused by vibration while drilling, a spiking neural network algorithm is proposed in this study. First, according to the time characteristics of the drift error of the gyroscope, the pulse time of the spiking neural network is used to encode the information intensity of the gyroscope. Then, the synaptic plasticity of the Izhikevich neuron model is used to adjust the excitatory synaptic conductance and inhibitory synaptic conductance to enhance the robustness of the network, thereby improving the anti-interference ability of the gyroscope signal against noise. Finally, under different vibration frequencies, the correlation between the firing rate of the Gaussian white noise output neuron and the membrane potential is analyzed. Experimental results show that under strong vibrations of different frequencies, noise has little effect on the firing rate of output neurons and the relative change of firing rate of output layer neurons, and has little effect on the membrane potential of output layer neurons, but has a greater impact on the correlation between membrane potentials. These results indicate that the proposed method improves the anti-interference ability of the gyroscope under vibration and noise, and can provide a new idea for the processing of gyroscope drift.
Keywords:vibration while drilling  data drift  spike neural network  synaptic plasticity  synaptic conductance  ignition rate  membrane potential correlation  disturbance rejection  
本文献已被 万方数据 等数据库收录!
点击此处可从《电子科技》浏览原始摘要信息
点击此处可从《电子科技》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号