首页 | 本学科首页   官方微博 | 高级检索  
     

基于残差密集连接与注意力融合的人群计数算法
作者姓名:沈宁静  袁健
作者单位:上海理工大学 光电信息与计算机工程学院,上海 200093
摘    要:现有人群计数算法采用多列融合结构来解决单一图像的多尺度问题,但该处理方法不能有效利用低层特征信息,从而导致最终人群计数结果不准确。针对这一缺陷,文中提出一种基于残差密集连接与注意力融合的人群计数算法。该算法的前端利用改进VGG16网络提取低级特征信息。算法后端主分支基于残差密集连接结构,利用残差网络和密集网络结合方式捕获层与层间的特征信息,可高效捕获多尺度信息。侧分支通过引入注意力机制,生成对应尺度注意力图,有效区分特征图的背景和前景,降低了背景噪声的影响。采用3个主流公开数据集对该算法进行验证。实验结果表明,该算法计数有效且计数准确率优于其他算法。

关 键 词:人群计数  残差密集  注意力  卷积神经网络  密度图  特征融合  多尺度  最近邻插值  
收稿时间:2021-01-28
本文献已被 万方数据 等数据库收录!
点击此处可从《电子科技》浏览原始摘要信息
点击此处可从《电子科技》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号