摘 要: | 目前卷积神经网络已成为腹部动脉血管分割领域的研究热点,但经典的卷积网络存在分割精度低和分割血管不连续的问题。为此,文中提出了基于改进3D全卷积网络的腹部动脉血管分割算法。该方法在网络的编码路径上构造不同尺度的侧输入,并将侧输入卷积后的图像与下采样卷积后的图像进行融合,提取更多的特征信息。同时,网络中嵌入了新的多尺度特征提取模块,该模块将通道注意力与密集扩张卷积进行了融合,有效地捕获了更高层次的特征信息。对腹部动脉血管进行分割的结果表明,与其他分割方法相比,所提方法在直观性和定量性上均有提高,证明了该方法能够提升血管分割精度。
|