首页 | 本学科首页   官方微博 | 高级检索  
     


A higher order parallelized multilevel fast multipole algorithm for3-D scattering
Authors:Donepudi  KC Jian-Ming Jin Velamparambil  S Song  J Weng Cho Chew
Affiliation:Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL;
Abstract:A higher order multilevel fast multipole algorithm (MLFMA) is presented for solving integral equations of electromagnetic wave scattering by three-dimensional (3-D) conducting objects. This method employs higher order parametric elements to provide accurate modeling of the scatterer's geometry and higher order interpolatory vector basis functions for an accurate representation of the electric current density on the scatterer's surface. This higher order scheme leads to a significant reduction in the mesh density, thus the number of unknowns, without compromising the accuracy of geometry modeling. It is applied to the electric field integral equation (EFIE), the magnetic field integral equation (MFIE), and the combined field integral equation (CFIE), using Galerkin's testing approach. The resultant numerical system of equations is then solved using the MLFMA. Appropriate preconditioning techniques are employed to speedup the MLFMA solution. The proposed method is further implemented on distributed-memory parallel computers to harness the maximum power from presently available machines. Numerical examples are given to demonstrate the accuracy and efficiency of the method as well as the convergence of the higher order scheme
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号