首页 | 本学科首页   官方微博 | 高级检索  
     

基于HHT的脱机手写体汉字特征提取
引用本文:刘爱真. 基于HHT的脱机手写体汉字特征提取[J]. 计算机应用, 2009, 29(Z2)
作者姓名:刘爱真
作者单位:聊城大学,计算机学院,山东,聊城,252059
摘    要:提出了一种基于数学形态学方向笔画提取的希尔伯特一黄变换(HHT)方法,对脱机手写体汉字进行特征提取.通过对HHT得到的Hilbert谱和边际谱的分析,构成4维结构特征和32维统计特征,并对其进行特征融合后得到36维特征向量作为最终的识别特征.试验结果表明其识别率比单独使用Gabor变换、小波变换等方法的识别率高.在识别速度上虽然比矩变换、数学形态学等方法慢,但是比Gabor变换的速度有明显提高,比多方法特征融合的方法在速度上有一定提高.该研究表明HHT作为一种新的信号分析方法,可以被有效地运用于提取汉字图像的特征.

关 键 词:特征提取  数学形态学  汉字

Feature extraction of off-line handwritten Chinese characters based on Hilbert-Huang transform
LIU Ai-zhen. Feature extraction of off-line handwritten Chinese characters based on Hilbert-Huang transform[J]. Journal of Computer Applications, 2009, 29(Z2)
Authors:LIU Ai-zhen
Abstract:Based on mathematical morphology, the authors studied a new feature extraction approach for off-line handwritten Chinese characters by Hilbert-Huang Transform (HHT). After an analysis of Hi]bert spectrum and marginal spectrum extracted by HHT, 4-dimensional structure features and 32-dimensional statistical features were reached. A 36-dimensional vector gained by the feature fusion was the final recognition feature. Experimental results show that this method has a higher recognition rate than Gabor transform, wavelet transform etc., and it also has a higher recognition speed than most of the feature extraction methods available. It indicates that HHT can be offectively applied to the feature extraction of Chinese characters.
Keywords:HHT  feature extraction  Hilbert-Huang Transform (HHT)  mathematical morphology  Chinese characters
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号