首页 | 本学科首页   官方微博 | 高级检索  
     

基于Hilbert曲线的近似k-最近邻查询算法
引用本文:徐红波,郝忠孝. 基于Hilbert曲线的近似k-最近邻查询算法[J]. 计算机工程, 2008, 34(12): 47-49
作者姓名:徐红波  郝忠孝
作者单位:1. 哈尔滨理工大学计算机科学与技术学院,哈尔滨,150080
2. 哈尔滨理工大学计算机科学与技术学院,哈尔滨,150080;哈尔滨工业大学计算机科学与技术学院,哈尔滨,150001
摘    要:在低维空间中R树的查询效率较高,而在高维空间中其性能急剧恶化,降维成为解决问题的关键。利用Hilbert曲线的降维特性,该文提出基于Hilbert曲线近似k-最近邻查询算法AKNN,分析近似k-最近邻的误差。实验结果表明算法在执行时间上优于线性扫描和基于R树最短优先查询算法,近似解的质量较好。

关 键 词:k-最近邻  降维  Hilbert曲线  近似算法

Approximate k-nearest Neighbors Query Algorithm Based on Hilbert Curve
XU Hong-bo,HAO Zhong-xiao. Approximate k-nearest Neighbors Query Algorithm Based on Hilbert Curve[J]. Computer Engineering, 2008, 34(12): 47-49
Authors:XU Hong-bo  HAO Zhong-xiao
Affiliation:(1. College of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080; 2. College of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001)
Abstract:R-Tree can achieve better performance in low-dimensional space, but its performance suffers greatly in high-dimensional space. So the reduction of the dimensionality is the key to the problem. Hilbert curve can fill d dimensional space linearly, divide it into equal-size grids and map points lying in grids into linear space. Using the quality of reducing dimensions of Hilbert curve, the paper presents an approximate k-nearest neighbors query algorithm, and analyzes the quality of the approximate k-nearest neighbors. According to the test, its running time is shorter than brute-force method and the algorithm based on R-tree, and the quality of approximate k-nearest neighbors is better.
Keywords:k-nearest neighbors  reduction of dimensionality  Hilbert curve  approximate algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号