首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
基于Web信息使用改进的无监督关系抽取方法构建交通本体
作者姓名:
马超
作者单位:
复旦大学计算机科学技术学院, 上海 201203
摘 要:
领域本体是对领域概念及其关系的一种高效合理的展现形式.在构建领域本体过程中,常常遇到的问题就是尽管本体概念完备但概念间关系复杂多样导致人工标记关系代价过高.使用无监督学习的关系抽取算法对包含丰富的领域概念的web信息进行抽取解决了这一问题.然而,传统的无监督学习的算法没有考虑到"单样例多概念对"的问题,导致最终抽取的概念关系不完整.本文利用交通领域的Web信息构建本体,将样例概念关系对权重引入传统的无监督学习方法Kmeans中,解决了此项问题并通过实验证明该算法取得了良好的效果.
关 键 词:
关系抽取
本体
无监督学习
样例概念关系对权重
收稿时间:
2015-04-14
修稿时间:
2015-06-08
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载
免费
的PDF全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号