首页 | 本学科首页   官方微博 | 高级检索  
     


Thermodynamic and kinetic modeling of the Cr-Ti-V system
Authors:G Ghosh
Affiliation:1. Department of Materials Science and Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, 2225 N. Campus Drive, 60208-3108, Evanston, IL
Abstract:A synergistic approach of thermodynamic and kinetic modeling is applied to the Cr-Ti-V system. To assist the design of (α+β) and β titanium alloys for structural applications and vanadium alloys for fusion reactor applications, a set of self-consistent and optimized thermodynamic model parameters is presented to describe the phase equilibria of the Cr-Ti, Cr-V, Ti-V, and Cr-Ti-V systems. The Laves phases, α-Cr2Ti, β-Cr2Ti, and γ-Cr2Ti, are described by a two-sublattice model assuming antistructure atoms on both sublattices. The calculated thermodynamic quantities and phase diagrams are in good accord with the corresponding experimental data. To assist the simulation of the kinetics of diffusional transformations in bodycentered cubic (bcc) alloys, the atomic mobilities of Cr, Ti, and V are modeled. A set of optimized mobility parameters is given. Very good agreement between the calculated and experimental diffusivities was found.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号