首页 | 本学科首页   官方微博 | 高级检索  
     


Computational calibration method for optical tomography
Authors:Tarvainen Tanja  Kolehmainen Ville  Vauhkonen Marko  Vanne Antti  Gibson Adam P  Schweiger Martin  Arridge Simon R  Kaipio Jari P
Affiliation:Department of Applied Physics, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland. Tanja.Tarvainen@uku.fi
Abstract:We propose a computational calibration method for optical tomography. The model of the calibration scheme is based on the rotation symmetry of source and detector positions in the measurement setup. The relative amplitude losses and phase shifts at the optic fibers are modeled by complex-valued coupling coefficients. The coupling coefficients can be estimated when optical tomography data from a homogeneous and isotropic object are given. Once these coupling coefficients have been estimated, any data measured with the same measurement setup can be corrected for the relative variation in the data due to source and detector losses. The final calibration of the data for the source and detector losses and the source calibration between the data and the forward model are obtained as part of the initial estimation for reconstruction. The calibration method was tested with simulations and measurements. The results show that the coupling coefficients of the sources and detectors can be estimated with good accuracy. Furthermore, the results show that the method can significantly improve the quality of reconstructed images.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号