首页 | 本学科首页   官方微博 | 高级检索  
     

基于混合差分蜂群算法的贝叶斯网络结构学习
摘    要:贝叶斯网络的结构学习是贝叶斯网络理论模型的核心,而现有的贝叶斯网络结构学习算法一般存在效率偏低的问题.针对此问题,文中提出基于混合差分蜂群算法的贝叶斯网络结构学习算法.该算法首先利用最大生成树准则得到初始种群,然后利用差分进化算法中的交叉、变异规则优化初始种群.在使用差分进化算法的过程中,分别将蜂群算法应用于变异阶段和优化改进交叉阶段,并且将云自适应理论应用于选择阶段选择生成个体.在经典贝叶斯网络上的仿真实验证明,文中算法在贝叶斯网络结构学习中具有较强的寻优能力.

关 键 词:贝叶斯网络  差分进化算法  蜂群算法  云自适应理论
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号