首页 | 本学科首页   官方微博 | 高级检索  
     

基于块稀疏递推残差分析的稀疏表示遮挡鲁棒识别算法研究
摘    要:针对如何在未知类别的情况下自动检测出遮挡区域,然后在克服遮挡影响的基础上提高识别算法的鲁棒性问题,提出基于块稀疏递推残差分析的稀疏表示遮挡鲁棒识别算法.该算法首先将待测样本分为上下两部分,并分别用对应块的训练样本进行稀疏表示,找出稀疏度更高的块及对应的稀疏解,并将更稀疏前N个解推广到另一个块中,重构测试样本.然后根据重构测试样本与原测试样本的残差推测遮挡像素.考虑到遮挡区域的连续性,利用形态学操作对推测的遮挡区域进行规则化处理并得到加权矩阵.最后利用加权矩阵对测试样本和训练样本进行整体加权归一化,再利用全局稀疏表示进行最终的分类判决.在AR、Yale B及MNIST上的遮挡仿真实验证明该方法不但可大致确定遮挡区域,还可提高遮挡图像识别的性能.

关 键 词:模式识别  稀疏表示  遮挡图像  递推残差  形态学操作
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号