首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular Orientation, Crystallinity, and Topographical Changes in Sliding and their Frictional Effects for UHMWPE Film
Authors:Myo Minn and Sujeet K Sinha
Affiliation:(1) Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
Abstract:This paper presents a study on the frictional anisotropy of semi-crystalline UHMWPE polymer film deposited on DLC-overcoated Si substrate. For UHMWPE film slid against a silicon nitride ball, there is a remarkable difference in the coefficient of friction between the forward and reverse directions after the slider has been initially slid against the film for certain number of cycles. The changes in the friction are greatly influenced by the initial number of sliding cycles. This frictional behavior is explained in terms of crystallinity change and molecular orientational effects on UHMWPE and micro-topographical effects due to the initial sliding. Nanoscratch test is conducted to understand the friction of the polymer film in the sliding track and the data are compared with the macroscale friction data. The results show that the friction in the reverse of the initial sliding direction is high in comparison to that in the forward direction and this behavior mainly depends upon the number of initial sliding cycles. The initial sliding cycles affect the crystallinity and molecular orientation of the film, as well as the film topography. This combined effect on the polymer film results in an anisotropic frictional behavior of the film.
Keywords:Crystallinity  Friction  Orientation  Sliding direction  UHMWPE
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号