首页 | 本学科首页   官方微博 | 高级检索  
     


Nonlinear analysis of short concrete-filled steel tubular beam-columns under axial load and biaxial bending
Authors:Qing Quan Liang
Affiliation:Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba, QLD 4350, Australia
Abstract:This paper presents a nonlinear fiber element analysis method for determining the axial load-moment strength interaction diagrams for short concrete-filled steel tubular (CFST) beam-columns under axial load and biaxial bending. Nonlinear constitutive models for confined concrete and structural steel are considered in the fiber element analysis. Efficient secant algorithms are developed to iterate the depth and orientation of the neutral axis in a composite section to satisfy equilibrium conditions. The accuracy of the fiber element analysis program is verified by comparisons of fiber analysis results with experimental data and existing solutions. The fiber element analysis program developed is employed to study the effects of steel ratios, concrete compressive strengths and steel yield strengths on axial load-moment interaction diagrams and the C-ratio of CFST beam-columns. The proposed fiber element analysis technique is shown to be efficient and accurate and can be used directly in the design of CFST beam-columns and implemented in advanced analysis programs for the nonlinear analysis of composite columns and frames.
Keywords:Biaxial bending  Composite columns  Fiber element analysis  Nonlinear analysis  Strength
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号