首页 | 本学科首页   官方微博 | 高级检索  
     


Mass balance research for high electrochemical performance direct methanol fuel cells with reduced methanol crossover at various operating conditions
Authors:Jun-Young Park  Jin-Hwa Lee  SangKyun Kang  Jun-Ho Sauk  Inseob Song
Affiliation:1. Samsung SDI Co. Ltd., 575 Shin-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-391, Republic of Korea;2. Samsung Advanced Institute of Technology, San 14-1, Nongseo-Dong, Giheung-Gu, Yongin-Si, Gyeonggi-do 449-712, Republic of Korea
Abstract:Mass balance research in direct methanol fuel cells (DMFCs) provides a more practical method in characterizing the mass transport phenomena in a membrane electrode assembly (MEA). This method can be used to measure methanol utilization efficiency, water transport coefficient (WTC), and methanol to electricity conversion rate of a MEA in DMFCs. First, the vital design parameters of a MEA are recognized for achieving high methanol utilization efficiency with increased power density. In particular, the structural adjustment of anode diffusion layer by adding microporous layer (MPL) is a very effective way to decrease WTC with reduced methanol crossover due to the mass transfer limitation in the anode. On the other hand, the cathode MPL in the MEA design can contribute in decreasing methanol crossover. The change of structure of cathode diffusion layer is also found to be a very effective way in improving power density. In contrast, the WTC of DMFC MEAs remains virtually constant in the range of 3.4 and 3.6 irrespective of the change of the cathode GDL. The influence of operating condition on the methanol utilization efficiency, WTC, and methanol to electricity conversion rate is also presented and it is found that these mass balance properties are strongly affected by temperature, current density, methanol concentration, and the stoichiometry of fuel and air.
Keywords:Direct methanol fuel cells   Mass balance   Membrane electrode assembly
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号