首页 | 本学科首页   官方微博 | 高级检索  
     


Development of high performance carbon composite catalyst for oxygen reduction reaction in PEM Proton Exchange Membrane fuel cells
Authors:Vijayadurga Nallathambi  Jong-Won LeeSwaminatha P Kumaraguru  Gang WuBranko N Popov
Affiliation:Center for Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
Abstract:Highly active and stable carbon composite catalysts for oxygen reduction in PEM fuel cells were developed through the high-temperature pyrolysis of Co–Fe–N chelate complex, followed by the chemical post-treatment. A metal-free carbon catalyst was used as the support. The carbon composite catalyst showed an onset potential for oxygen reduction as high as 0.87 V (NHE) in H2SO4 solution, and generated less than 1% H2O2. The PEM fuel cell exhibited a current density as high as 0.27 A cm−2 at 0.6 V and 2.3 A cm−2 at 0.2 V for a catalyst loading of 6.0 mg cm−2. No significant performance degradation was observed over 480 h of continuous fuel cell operation with 2 mg cm−2 catalyst under a load of 200 mA cm−2 as evidenced by a resulting cell voltage of 0.32 V with a voltage decay rate of 80 μV h−1. Materials characterization studies indicated that the metal–nitrogen chelate complexes decompose at high pyrolysis temperatures above 800 °C, resulting in the formation of the metallic species. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface doped with nitrogen groups is catalytically active for oxygen reduction.
Keywords:Carbon composite catalyst  Nitrogen functional group  Oxygen reduction  Polymer electrolyte membrane fuel cell  Transition metal
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号